Extracts outliers from object of class "outForest". The outliers are sorted by their absolute score in descending fashion.

outliers(object, ...)

# Default S3 method
outliers(object, ...)

# S3 method for class 'outForest'
outliers(object, ...)

Arguments

object

An object of class "outForest".

...

Arguments passed from or to other methods.

Value

A data.frame with one row per outlier. The columns are as follows:

  • row, col: Row and column in original data with outlier.

  • observed: Observed value.

  • predicted: Predicted value.

  • rmse: Scaling factor used to normalize the difference between observed and predicted.

  • score: Outlier score defined as (observed-predicted)/RMSE.

  • threshold: Threshold above which an outlier score counts as outlier.

  • replacement: Value used to replace observed value.

Methods (by class)

  • outliers(default): Default method not implemented yet.

  • outliers(outForest): Extract outliers from outForest object.

Examples

x <- outForest(iris)
#> 
#> Outlier identification by random forests
#> 
#>   Variables to check:		Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
#>   Variables used to check:	Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, Species
#> 
#>   Checking: Sepal.Length  Sepal.Width  Petal.Length  Petal.Width  
outliers(x)
#>   row          col observed predicted      rmse     score threshold replacement
#> 2  42  Sepal.Width      2.3  3.341299 0.2914918 -3.572309         3         3.1
#> 5 115  Petal.Width      2.4  1.814530 0.1775892  3.296767         3         1.8
#> 1 107 Sepal.Length      4.9  6.114094 0.3691353 -3.289021         3         6.3
#> 4 119 Petal.Length      6.9  5.935608 0.2961940  3.255946         3         6.6
#> 3  99 Petal.Length      3.0  3.937854 0.2961940 -3.166351         3         3.9
#> 6 135  Petal.Width      1.4  1.954661 0.1775892 -3.123281         3         1.8