Based on the inversion principle, parametric CIs for the non-centrality parameter (NCP) Delta of the F distribution are calculated. To keep the input interface simple, we do not provide bootstrap CIs here.
ci_f_ncp(x, df1 = NULL, df2 = NULL, probs = c(0.025, 0.975))
The result of stats::lm()
or the F test statistic.
The numerator df. Only used if x
is a test statistic.
The denominator df. Only used if x
is a test statistic.
Lower and upper probabilities, by default c(0.025, 0.975)
.
An object of class "cint", see ci_mean()
for details.
A positive lower \((1 - \alpha) \cdot 100\%\)-confidence limit for the NCP goes
hand-in-hand with a significant F test at level \(\alpha\).
According to stats::pf()
, the results might be unreliable for very large F values.
Smithson, M. (2003). Confidence intervals. Series: Quantitative Applications in the Social Sciences. New York, NY: Sage Publications.
fit <- lm(Sepal.Length ~ ., data = iris)
ci_f_ncp(fit)
#>
#> Two-sided 95% F confidence interval for the non-centrality parameter of
#> the F-distribution
#>
#> Sample estimate: 980.4737
#> Confidence interval:
#> 2.5% 97.5%
#> 704.6598 1200.8313
#>
ci_f_ncp(fit, probs = c(0.05, 1))
#>
#> One-sided 95% F confidence interval for the non-centrality parameter of
#> the F-distribution
#>
#> Sample estimate: 980.4737
#> Confidence interval:
#> 5% 100%
#> 738.8387 Inf
#>